
AEROSP – 588
Final Project Prit Chovatiya

1

Drone Delivery Schedule Optimization

An Investigation

Introduction

Background and Motivation

The e-commerce industry is are predicted to grow a staggering $4 trillion by 2023 [1].

Consequently, online retailers, in order to compete in this arena, attempt to deliver the best

possible products in the least amount of time. Last-mile delivery optimization plays a crucial

role in achieving this feat and companies like Amazon.com, Inc. are actively seeking to use

fleets of drones to deliver products at the customer’s doorstep. Scheduling the delivery in most

efficient manner with the least amount of wait time for the customer is key element to this.

Even though the “travelling salesman-like” problem has been already tackled by companies in

the past, the usage of drones and certain limitations with them presents a new challenge with a

different set of constraints. Particularly, a drone’s batteries have to be charged, forcing them to

return to the warehouse repeatedly in a given day while also meeting delivery-time constraints.

As freight companies expand to new cities, the task of finding an optimal delivery schedule

with drones is particularly challenging. Specifically, the scale of the problem grows

exponentially with the increase in the number of locations (shown in Figure 1). For instance,

making a delivery schedule for 1 warehouse, 8 delivery locations and a possibility of charging

after each delivery has 8! X 27 = 5,160,960 potential delivery routes!

Figure 1: Possible Routes with Locations

Just adding two new locations for the same problem, the delivery routes grow to a whopping

1,875,645,600 possibilities! Given the sheer scale of this problem, it is rather unrealistic to test

every permutation of the routes calling for a faster method. This problem is certainly an

appropriate candidate for an optimization-based investigation that can evaluate and select

better designs automatically. Hence, a detailed study on the same is presented hereby.

AEROSP – 588
Final Project Prit Chovatiya

2

Problem Formulation

Optimization Problem Statement

Consequently, the problem for an optimization strategy is formulated in a manner that is easy

to implement, robust and scalable. The problem can be summarized via this question: For a

given set of packages to be delivered to different locations, what is the most optimal departure

schedule consisting of order of deliveries and charging times for the drone? The problem stated

above is formulated so that the objective function, essentially a cost function which is being

minimized. The cost function is a linear combination of two terms- 1) the total distance

travelled by the drone and 2) number of charging stops used in a trip. This function can also be

modified to conduct a multi-objective optimization for a pareto front. The formulated problem

is given below:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 → 𝑓(𝑥)

 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜: 𝑥𝑖 , 𝑦𝑗 𝑖 = 1, 2, … 𝑛

 𝑗 = 1, 2, … 𝑛 − 1

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑠𝑏𝑖 𝑡𝑜 𝑖+1 ≥ 𝑏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

 𝑥𝑖+1 ≠ 𝑥𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑏𝑜𝑢𝑛𝑑𝑠: 1 ≤ 𝑥𝑖 ≤ 𝑛

 0 ≤ 𝑦𝑗 ≤ 1

𝐻𝑒𝑟𝑒, 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑥) 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 ∶ −

𝑓(𝑥) = 𝛼 ∙ ∑ [√(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2]

𝑛

𝑖=1

+ 𝛽 ∙ [# 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑜𝑝𝑠]

𝑤ℎ𝑒𝑟𝑒 :
𝑥𝑖 → 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠

𝑦𝑗 → 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑎𝑓𝑡𝑒𝑟 𝑒𝑎𝑐ℎ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦

𝑛 → 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑏 → 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑒𝑣𝑒𝑙; sb → 𝑠𝑡𝑜𝑟𝑒𝑑 𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝛼, 𝛽 → 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠
(𝑥𝑖 , 𝑦𝑖) → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

(𝑥𝑖−1, 𝑦𝑖−1) → 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

As seen from the problem formulation above the design variables for this problem will be

sequential in nature. For instance, in a case of 8 locations, the two-design variables will be in

the following vector form:

𝑥𝑖 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8]

𝑦𝑗 = [𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7]

Here, 𝑥1 represents the first location to be visited, followed by 𝑥2 and so on. Secondarily, 𝑦𝑗

represents a decision “to go charge at warehouse” versus “continue without charging” by

parameters ‘1’ and ‘0’ respectively. An example of how these design variables are interpreted

is shown below.

AEROSP – 588
Final Project Prit Chovatiya

3

For this particular investigation, 8 locations and a warehouse are simulated, which is plotted in

Figure 1. The coordinates of these locations and the warehouse are shown in Table 1 and the

locations themselves are visually represented in Figure 2.

Table 1: Location Coordinates

Figure 2: Sample map for an 8-location delivery problem

Considering an example, in a case of 8 locations, for the two-design variables:

𝑥𝑖 = [7, 3, 6, 2, 4, 0, 5, 1]

𝑦𝑗 = [1, 0, 0, 1, 0, 0, 0]

Here, it should be noted that according to 𝑦𝑗 design variable, two charging stops are

recommended, the first one after visiting location 7 and the second one after visiting location

2. Furthermore, all the charging stops occur at the warehouse and consequently the drone flies

back mid-trip. All the trips start and end at the warehouse representing the real-world scenario.

For indexing purposes, location numbers range from 0 to 7 instead. The simulated trip can be

shown by the following:

Figure 3: Sample input interpretation of an 8-location model

Location Coordinates

0 [-300, 100]

1 [-600, 0]

2 [-400, -150]

3 [-150, -400]

4 [-200, -600]

5 [-100, -100]

6 [-500, 500]

7 [-500, -300]

Warehouse [-300, -300]

Going from warehouse: (-300, -300) to starting location # 7 at: (-500, -300)

Warehouse stop between loc # 7 at: (-500, -300) to loc # 3 at: (-150, -400)

Directly going from loc # 3 at: (-150, -400) to loc # 6 at: (-500, 500)

Directly going from loc # 6 at: (-500, 500) to loc # 2 at: (-400, -150)

Warehouse stop between loc # 2 at: (-400, -150) to loc # 4 at: (-200, -600)

Directly going from loc # 4 at: (-200, -600) to loc # 0 at: (-300, 100)

Directly going from loc # 0 at: (-300, 100) to loc # 5 at: (-100, -100)

Directly going from loc # 5 at: (-100, -100) to loc # 1 at: (-600, 0)

Going from last loc # 1 at: (-600, 0) back to warehouse.

Charged 2 times during the full trip.

Total distance travelled during full trip: 4624.206124985304

AEROSP – 588
Final Project Prit Chovatiya

4

Another interesting consideration here, is that the design variable 𝑦𝑗 also directly affects the

objective function as minimizing charging stops saves time and improves efficiency. The

function essentially returns a weighted objective value including the distance and the charging.

Problem Classification

The above problem can be classified into a multi-objective optimization – which includes

minimizing the distance travelled by the drone and minimizing the amount of charging for a

given trip. The design variables are discrete here as location indices and charging decisions

have to strictly be integers for simplicity. There are two key constraints imposed on the design:

1. the battery stored in the drone always has to have the potential of returning back to the

warehouse from any given point in the trip and 2. no location can be revisited after they have

been visited once except the warehouse. A key assumption here is that the drone has the

capability to carry payload for 4 deliveries, implying that it would be able to deliver 4 packages

simultaneously during a trip without going back to the warehouse. With regards to the objective

and the constraint function characteristics, the objective function is non-smooth. In terms of

the linearity no certain statement can be made. The objective is certainly non-convex,

multimodal and deterministic.

Models and Coupling

The model used in this problem to compute the objective function consists of multiple

components. Two important objectives of minimizing the distance travelled and minimizing

the amount of charging stops in a trip are indeed coupled. In a particular case, when the

optimization algorithm is minimizing the distance travelled during a trip, the drone might have

to make multiple charging stops at the warehouse, to make the trip possible. This implies that

even though the distance is being minimized, there are still a certain number of charging trips

required, which in turn increase the amount of distance travelled. Contrarily, when the

optimization is minimizing the number of charging trips, the solution still has to feasible

enough to visit all locations without failing to return to the warehouse with sufficient charge.

In both the cases, the objectives are competing and need to be handled appropriately.

Optimization Algorithm

It was evident that due to the discrete nature of the inputs, unavailability of gradients and the

discontinuity of the objective function, a gradient-free optimization was to be sought. Even

though gradient free methods perform inefficiently on high-dimension problems, this method

works well with less than 30 variables, which in our case is only 15. Historically, problems

consisting of sequential optimization also have been dealt with evolutionary methods such as

genetic algorithm due to their flexibility in representing discretized design variables and

exploring a “wide” design space. Furthermore, since a solution for the aforementioned problem

requires a global search, genetic algorithm is chosen for this problem. Even though alternative

methods such as Nelder-Mead and DIRECT can be used, these methods would often have

extraneous amounts of constraints to ensure the discrete nature of design variables, rendering

it more complicated and tedious than the former. Hence, due to the simplicity and robustness

of the genetic algorithm to function with discrete design variables, it was chosen as the primary

method.

This method uses heuristically determined optimality criterion and iteration procedure while

exploiting directly evaluated objective functions. The genetic algorithm is ‘population based’

which uses randomly generated ‘individuals’ consisting of that population. This population is

reproduced iteratively, while filtering out the ‘fittest’ individuals (designs) every time based

AEROSP – 588
Final Project Prit Chovatiya

5

on the principle of biological evolution and “survival of the fittest”. It involves three important

components, namely: 1. selection followed by 2. crossover (reproduction) and finally, 3.

mutation (natural variation). The implementation of this method is covered in the following

section.

Problem Setup

A major classification of the genetic algorithms is dependent on the manner of encoding the

design variables. They can be either ‘binary encoded’ or ‘real-encoded’. Binary encoding is

used to represent number, whether an integer or a real number, in the form of bits: ‘0’s and

‘1’s. Whereas, real encoding simply translates the numbers to real values themselves. Encoding

is done to replicate the chromosome type of representation of various designs which are merged

and modified in various ways to introduce either ‘crossover’ or ‘mutation’ in the design

variables.

In our case, a ‘binary encoded’ implementation is presented, as this is one of the most efficient

ways to represent integers, a characteristic which certainly dominates our design space. In this

method, each design variable is represented with ‘m’ number of bits. Each bit, as stated above,

has a value of either ‘0’ or ‘1’. Various permutations of these bits tend to represent various

numbers. For a given design variable 𝑥 ∈ [𝑥𝑙𝑜𝑤𝑒𝑟 , 𝑥𝑢𝑝𝑝𝑒𝑟], this design space can be divided

into 2𝑚 − 1 intervals. From which, the precision of this representation can be found via the

given formula:

∆ 𝑥 =
𝑥𝑢𝑝𝑝𝑒𝑟 − 𝑥𝑙𝑜𝑤𝑒𝑟

2𝑚 − 1

For our problem, two design variables: the delivery sequence and the charging decisions have

to use different types of representation since both the variable have different bounds. In the

case of the delivery sequence, 𝑥𝑖 ∈ [0, 7], representing the indices of each of the 8 locations.

Since we wish to only have a precision of ∆ 𝑥 = 1 between these variables, the number of bits

used to represent this is given by:

∆ 𝑥 =
7 − 0

2𝑚 − 1
 → 2𝑚 =

7 − 0

1
+ 1

Resulting in a 3-bit representation of the 8 locations. Table 2 shows each of the design variables

for locations represented by a 3-bit representation.

Location 3-bit representation

0 000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

Table 2: 3-bit representation of xi

Contrarily, in the case of the charging decision variable 𝑦𝑗 ∈ [0, 1], each of these values could

be simply represented by ‘0’s or ‘1’s themselves. Finally, these two design variables can be

AEROSP – 588
Final Project Prit Chovatiya

6

represented into a ‘design string’ of 31 binary digits. For instance, a design [𝑥𝑖 , 𝑦𝑗] given

below:

[𝑥𝑖 ; 𝑦𝑗] = [0, 1, 2, 3, 4, 5, 6, 7 ; 0, 0, 1, 0, 1, 0, 1]

can be represented as:

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | 0 | 0 | 1 | 0 | 1 | 0 | 1

Upon encoding the design variables in a binary string representation, all the tasks of the genetic

algorithm namely: selection, crossover and mutation can be conducted by string manipulation

but there is still a need of decoding these designs for the objective function evaluations. For

decoding these representations, the formula given below is used to convert bits into integers:

 𝑥 = 𝑥𝑙𝑜𝑤𝑒𝑟 + ∑ 𝑏𝑖 . 2𝑖 . ∆ 𝑥

𝑚−1

𝑖=0

Generating Initial Population

The first step in the implementation of the genetic algorithm is to generate a randomized design

space with ‘N’ number of individuals, all grouped in a generation. As a general heuristic rule,

the number of individuals ‘N’ in the initial population is usually more than an order of

magnitude larger than the number of design variables. To randomize the design generation for

a binary representation, a random number in 𝑟 ∈ [0, 1] is selected. It is then probabilistically

determined that if 𝑟 ≤ 0.5, then the bit will be chosen as a ‘0’ and if 𝑟 ≥ 0.5, then the bit will

be assigned a value of ‘1’. This is done repeatedly, until a binary string of 31 bits is obtained

representing one design in a population of N individuals. Overall, for an initial population of

1000 individuals, 31,000 bits have to randomly generated. Here, the population size N can vary

and is heuristically determined which ensures maximum diversity in the design space.

Evaluating Fitness

Upon generating the initial design population, all the individuals are to be evaluated by the

objective function to start selection process. To do this, the encoded initial population is

decoded and fed into the objective function. Contrary to the other optimization methods, the

genetic algorithm maximizes the objective. For our case, since the objective is being

minimized, the objective function is converted to 𝐹 =
1

𝑓(𝑥)
 resulting in the objective function

given by:

𝐹(𝑥) =
1

𝛼 ∙ ∑ [√(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2]
𝑛

𝑖=1
+ 𝛽 ∙ [# 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑜𝑝𝑠]

Furthermore, to ensure that our designs are feasible, the objective function has to be

transformed to a merit function which reflects the violation of constraints as well. In our

problem, the two constraints:

 𝑐1(𝑥) → 𝑠𝑏𝑖 𝑡𝑜 𝑖+1 ≥ 𝑏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

 𝑐2(𝑥) → 𝑥𝑖+1 ≠ 𝑥𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

These ensure that the drone has enough battery at all times to get to next location (𝑐1) and that

the drone does not revisit any previously visited locations (𝑐2) respectively.

AEROSP – 588
Final Project Prit Chovatiya

7

In the case of 𝑐1, the drone starts the trip with stored battery 𝑠𝑏 = 1500 𝑚𝑒𝑡𝑒𝑟𝑠. Here, the

battery is linearly related to the distance, implying that a single charge can give the drone the

ability to travel 1500 meters at once. The stored battery 𝑠𝑏 is repeatedly calculated at every

step in the trip, yielding the following constraint violation values 𝑐1,𝑣𝑖𝑜 if the drone has/doesn’t

have the sufficient battery at all the steps in a trip, given by the equations below:

𝑐1,𝑣𝑖𝑜(𝑥) = 0 𝑖𝑓 𝑠𝑏 𝑖 𝑡𝑜 𝑖+1 ≥ 𝑏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

𝑐1,𝑣𝑖𝑜(𝑥) = |𝑠𝑏 𝑖 𝑡𝑜 𝑖+1 − 𝑏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑| 𝑖𝑓 𝑠𝑏 𝑖 𝑡𝑜 𝑖+1 ≤ 𝑏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

In the case of constraint 𝑐2, a simple repetition check is used to compute the 𝑐2,𝑣𝑖𝑜 values given

by the following equations:

𝑐2,𝑣𝑖𝑜(𝑥) = 0 𝑖𝑓 𝑥𝑖+1 ≠ 𝑥𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 (𝑛𝑜 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠)

𝑐2,𝑣𝑖𝑜(𝑥) = 𝑐𝑜𝑢𝑛𝑡[𝑥𝑖+1 = 𝑥𝑖] 𝑖𝑓 𝑥𝑖+1 = 𝑥𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 (𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠)

On the other hand, the two constraint violation values are combined into a penalty function

given by the following equation:

𝐶 𝑣𝑖𝑜(𝑥, 𝜇1, 𝜇2) = 𝜇1. 𝑐1,𝑣𝑖𝑜(𝑥) + 𝜇2. 𝑐2,𝑣𝑖𝑜(𝑥)

Here, 𝜇1 and 𝜇2 are relative scaling constraints to ensure homogenous constraint violation

penalties apply appropriately. Finally, a merit function 𝐹(𝑥, 𝜇1, 𝜇2) is used to include the

constraint violation as a linear combination of the objective function and the penalty function

given by :

𝐹(𝑥, 𝜇1, 𝜇2) =

1

𝛼 ∙ ∑ [√(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2]
𝑛

𝑖=1
+ 𝛽 ∙ [# 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑜𝑝𝑠] + 𝐶 𝑣𝑖𝑜(𝑥, 𝜇1, 𝜇2)

This function is maximized and used to evaluate the ‘fitness’ for every individual in a given

population. This method allows the optimization algorithm to conduct an unconstrained search

on an implicitly constrained objective function making it simple to implement while ensuring

feasibility of designs.

Selection

After evaluating fitness of all the design variables in the population, a selection procedure

inspired from the concept of “survival of the fittest” is used to generate ‘parent’ populations.

These parent populations are then used to generate ‘off-springs’ which populate the subsequent

generation. This process improves the average fitness of a generation resulting in filtering of

better designs. There are various methods for conducting selection such as tournament or

roulette wheel selection. Hereby, the tournament selection method is used. In this method, two

randomly selected individuals are evaluated and compared with each other, and the better

design is chosen to be in the final parent pool. It results in a pool of N/2 parents from an initial

generation consisting of N individuals. This is done twice to create two parent pools which are

then used for crossover or ‘mating’ of parents from both the pools. This process is better shown

in Figure 4 below.

AEROSP – 588
Final Project Prit Chovatiya

8

Figure 4: Tournament Selection

As it can be seen here, a tournament selection is conducted twice, with the two selection

procedures resulting in the parent pools given in red and blue respectively.

Crossover

This process uses the two parent pools resulting from the tournament selection process and

uses them to generate an ‘offspring’ population. In general, two individuals arise from a single

parent pair resulting in a population of N individuals. This method can be completed using an

operation called ‘n-point crossover’. Here, the binary representation of one randomly selected

parent from each parent pool is considered. For our problem, a 2-point crossover is done for

the sequence design variable 𝑥𝑖. This process can be visualized using Figure 5 where parents

from parent pool A and B are represented in red and blue respectively.

Figure 5: 2-point Crossover

Two offspring are generated by selecting the first and the third set of bits from parent red and

selecting the second set of bits from parent blue and vice versa for the other offspring. In this

way, characteristics from both parents are transferred to resulting offspring. The following

example applies this strategy and results are shown below. It is to be noted that only 4 variables

of 3-bit design representations out of 8 variables in 𝑥𝑖 are shown below:

Parent A = | 000 | 001 | 010 | 011 | Offspring A = | 010 | 001 | 010 | 001 |

Parent B = | 111 | 101 | 110 | 100 | Offspring B = | 101 | 101 | 110 | 101 |

With regards to the charging decision design variable 𝑦𝑗, an alternate crossover strategy was

used. This process alternately selected bits from both the parents similar to the 2-point

crossover, for the binary representation of 𝑦𝑗 shown below:

Parent A = | 0 | 0 | 1 | 0 | 1 | 0 | 1 | Offspring A = | 0 | 0 | 1 | 1 | 1 | 0 | 1 |

Parent B = | 1 | 0 | 1 | 1 | 0 | 0 | 1 | Offspring B = | 1 | 0 | 1 | 0 | 0 | 0 | 1 |

In this manner the offspring for the next generation were found.

AEROSP – 588
Final Project Prit Chovatiya

9

Mutation

For the final operation of the genetic algorithm, mutation is an operation inspired by the

occasional genetic mutation that occurs in a given population. It is essential for this method as

it introduces an element of diversity in the population. Even though crossover and selection

combine the characteristics of better designs into the offspring, mutation helps cover the gaps

in some information which is lost in those operations. To make this possible, a ‘bit-flip’

strategy was used to introduce these mutations in a certain number of designs in a population.

The example below shows this operation on a design:

Before mutation: 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | 0 | 0 | 1 | 0 | 1 | 0 | 1

After mutation: 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000 | 1 | 1 | 0 | 1 | 0 | 1 | 0

One of the most neglected but a rather crucial component of the mutation procedure is the

mutation rate which impacts the number of individuals being mutated in every generation.

There are many ways in which this hyperparameter is set which has different implications on

the search. Extremely high mutation rates introduce abnormally high diversity into the

population making this more of a randomized search. On the other hand, extremely low

mutation rates can be responsible for leading the search into a local minimum. Furthermore, a

constant mutation rate throughout all the generations can also produce inconsistent results.

With regards to our implementation, a heuristically determined dynamic-mutation rate was

adopted. This rate was decreased by some fixed percentage every 10 generations to ensure a

robust search through the design space.

Overall Implementation

Upon defining the main operations for the genetic algorithm, a collective method of the

algorithm is shown by the pseudo-code below. Firstly, the bounds for the design variables are

inputted, which are used to generate the initial population. Each individual in the population is

evaluated via the objective function and selection is conducted upon them resulting in two

parent pools. These pools are inputted into the crossover function which outputs N offspring

resulting in a new generation. Based on a specific mutation rate, some individuals in a

population are then mutated. This process is repeated for a given number of generations

counted by ‘k’ and the best designs are produced as the output.

Figure 6: Pseudo code for Genetic Algorithm

AEROSP – 588
Final Project Prit Chovatiya

10

Optimization Results

Optimization of a Simplified Problem

To verify the correct implementation of the genetic algorithm, it is crucial to conduct ‘sanity-

checks’ before the complete execution of the algorithm on a complex model. To enable this,

the genetic algorithm is implemented on a simplified objective function given below:

𝑓(𝑥) = 𝛼 ∙ ∑ [√(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2]

𝑛

𝑖=1

+ 𝛽 ∙ [# 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑜𝑝𝑠]

It is to be noted that here, the penalty component for constraint violation has been omitted

making this simply a minimization of the total distance travelled and the number of charging

stops. For this simplified version, neglecting the constraints for battery storage and repetition

of delivery locations, the algorithm should naturally converge to a design variable with the

same repeated locations in 𝑥𝑖 since this results in a minimal total distance. Furthermore, the

number of charging stops are minimized by merely not having any charging stops at all. The

result should be of the form, where 𝑥 is the location which closest to the warehouse.

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [𝑥, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥 ; 0, 0, 0, 0, 0, 0, 0]

Since, now we have an understanding of the nature of the expected result from the minimizer,

we shall run the genetic algorithm and verify the same. Upon implementing this, the algorithm

yielded an optimum design variable given below:

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [2, 2, 2, 2, 2, 2, 2, 2 ; 0, 0, 0, 0, 0, 0, 0]

This is indeed the same as the expected result. Here, the optimization yields, 𝑥 = 2, since

location # 2 is the closest to the warehouse resulting in the minimum total distance.

Furthermore, the convergence plots for the algorithm are given below. Here, in Figure 7, the

average fitness of every generation is plotted with the number of generations. It can be clearly

seen that the algorithm, converges with a design with maximum fitness for the last few

generations.

Figure 7: Average fitness with generations

Additionally, the distance of the best design from every generation has been plotted below in

Figure 8. As it can be verified the algorithm converges on the minimum distance.

AEROSP – 588
Final Project Prit Chovatiya

11

Figure 8: Average fitness with generations

Now, since the algorithm functions as expected for a simplified model, it can be used to

optimize the complex model.

Algorithm Justification

As seen from the results of the optimization of the simplified problem, the genetic algorithm

proves to find a solution quickly. A population size of 5000 individuals and 30 generations was

used. This implies that the algorithm took only 150,000 function evaluations to find the minima

for a problem which consists of more than 5,160,960 possible designs in the design space.

It can be inferred from the convergence plots, that a significant improvement in the average

fitness value is noted with generations. Furthermore, the distance of the best designs with

generations converges to a minimum which is expected. Furthermore, the algorithm seems to

handle the discretized design variables with ease and without any complications. Hence, the

implementation of the genetic algorithm proves to be robust and shows promise in dealing with

our complex problem.

Hyperparameters

There are many hyperparameters for the genetic algorithm which need to be experimentally

determined and tweaked to get the best performance for the specified problem. Specifically,

the population size, number of generations and mutation rate are some of the crucial parameters

which are to be decided. Starting from the population size, as pointed out earlier, it is usually

chosen to be set an order of magnitude higher than the number of design variables. In our case,

it was determined via trial and error that a population size of 8000 individuals yielded the best

diversity in the initial population pool. A population size greater than that resulted in many

repeated designs. Hence, 8000 was chosen as the population size.

With regards to the number of generations, it was seen, yet again through trial and error that

populations usually converged to an optimum after 50-60 generations. Hence, considering a

margin of safety, all the optimizations were run for 70 generations.

Finally, the study on the effect of the mutation rate on convergence was conducted. Four

different initial mutation rates were used to experiment. All of the algorithm runs used a

dynamically changing mutation rate. Every 10 generations, the mutation rate was reduced by

80%. For the initial mutation rates of 50%, 25%, 10% and 1%, the convergence plots are shown

in Figure 9.

AEROSP – 588
Final Project Prit Chovatiya

12

Figure 9: Effect of Mutation Rate on Convergence

It can be seen that lower initial mutation rates yielded the best improvement in average fitness

values. Hence, an initial mutation rate of 15% was used in our implementation.

Main Problem Optimization

The optimization of the main problem was done in three scenarios. The first two scenarios

tested the objective functions for minimizing distance travelled during a trip and for

minimizing number of charging stops separately. The third and the final scenario tested the

objective function for a combination of both the objectives. This was done to obtain a clearer

understanding of the solutions. Furthermore, for each of these scenarios four test runs were

used for finding the optimum to increase the possibility of capturing the optimal design since

the initial population is randomized. Each test used 8000 individuals, 70 generations and varied

initial mutation rates [15%, 10%, 5%, and 1%] to further improve the odds of finding the

optimum.

Objective – Minimize Distance Travelled

The objective of minimizing distance travelled is first investigated. The modified objective

function for this scenario if given by the following equation:

𝐹(𝑥, 𝜇1, 𝜇2) =

1

𝛼 ∙ ∑ [√(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2]
𝑛

𝑖=1
+ 𝐶 𝑣𝑖𝑜(𝑥, 𝜇1, 𝜇2)

The minimum found for same is given by:

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [4, 2, 7, 3, 5, 0, 6, 1 ; 1, 0, 1, 0, 0, 0, 0]

with an optimal distance of 𝑓(𝑥𝑖
∗) = 3341.64 m. The convergence plots are plotted for this

case below in Figure 10 and 11.

AEROSP – 588
Final Project Prit Chovatiya

13

Figure 9: Convergence plot for Scenario 1

Here, it can be seen that the convergence rates for various mutation rates are identical for

Scenario-1. Even though the same improvement on the average population fitness is noticed

there is a major difference between the optimum designs each of the test runs reveal.

Figure 10: Minimum distance for best designs for Scenario 1

As shown in Figure 10, the minimum distance yielded by mutation rate of 15% is the best

solution. Another interesting phenomenon noted here is that every this this test is run, the

optimal changes as a result of the randomized initial population. This results in the algorithm,

occasionally getting lucky/unlucky with some really good/poor designs.

Objective – Minimize Charging Stops

Here, the objective of minimizing the number of charging stop was investigated. The modified

objective function for this scenario if given by the following equation:

𝐹(𝑥, 𝜇1, 𝜇2) =

1

𝛽 ∙ [# 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑜𝑝𝑠] + 𝐶 𝑣𝑖𝑜(𝑥, 𝜇1, 𝜇2)

AEROSP – 588
Final Project Prit Chovatiya

14

The optimization found the following optimum design:

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [7, 2, 5, 0, 6, 1, 3, 4 ; 0, 1, 0, 0, 0, 1, 0]

which only uses two charging stops which the minimum required stops to make any trip in this

design space feasible. The convergence plot for the same is shown in Figure 11. It can be seen

that the initial mutation rate of 15%, yields slightly better performance for the average fitness

for the final generation.

Figure 11: Convergence plot for Scenario 2

Furthermore, a rather interesting observation can be made when the total distance for the best

design solutions is plotted for all the scenarios which is shown in Figure 12.

Figure 12: Minimum distance for best designs for Scenario 2

It can be noted that the best design for the initial mutation rate of 15% yields a distance travelled

of 𝑓(𝑥𝑖
∗) = 3210.28 m. This is interesting because when the objective was to simply minimize

the distance travelled in Scenario-1, the solution found had a greater distance than this.

Consequently, this implies and verifies our belief about the coupling of the both the objectives

and hence, if we were to find a minimum then that objective function shall include both the

terms.

AEROSP – 588
Final Project Prit Chovatiya

15

Objective – Minimize both objectives

Finally, for Scenario-3, the case of minimizing both the distance travelled and the charging

stops, the objective function remains the same as the one in the problem formulation. The

optimization found the following optimum design:

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [7, 3, 4, 2, 5, 0, 6, 1 ; 1, 0, 1, 0, 0, 0, 0]

resulting in a minimum distance of 𝑓(𝑥𝑖
∗) = 3251.29 m with only 2 charging stops. The

convergence plot for the same is shown in Figure 13. It can be seen that the initial mutation

rate of 1%, yields slightly better performance for the average fitness for the final generation.

Figure 13: Convergence plot for Scenario 3

Even though an initial mutation rate of 1% yielded a better average fitness for the final

generation, the run with an initial mutation rate of 10% also gave comparable minimum

distances.

Figure 14: Minimum distance for best designs for Scenario 3

AEROSP – 588
Final Project Prit Chovatiya

16

Upon conducting further runs, with an initial mutation rate of 15% , a slightly better optimum

design was found. This design is given below :

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [7, 3, 4, 2, 1, 6, 0, 5 ; 1, 0, 1, 0, 0, 0, 0]

resulting in a minimum distance of 𝑓(𝑥𝑖
∗) = 3055.73 m with only 2 charging stops. This

design is only slightly different from the optimal design found in Scenario-3.

Figure 15: Optimal Route for delivery with charging stops

The entire route which minimizes both the distance travelled during a trip and the charging

stops is plotted below in Figure 15. It can be verified visually that an optimal route was found

by the algorithm.

Conclusion and Recommendations

It can be seen from all the scenarios that the genetic algorithm is successful in finding the

optimum values. This method proves to be fast, efficient and robust for problems with large

design space and discrete variables. Even though this method is successful in finding the

minima, it is still incapable of yielding consistent results every run. This is due to its

randomized initialization of populations. Sometimes, the algorithm gets ‘lucky’ and converges

on a good design and sometimes it does not. Furthermore, a lot of experimentation has to be

done in order to find the best hyperparameters for the genetic algorithm. Different problems

have different optimum hyperparameters and the selection needs to be done carefully. Genetic

algorithm proves to be valuable in getting important insights in sequential/route optimization.

This methodology of finding the optimum route for a drone delivery system proves to be

extremely applicable to the last-mile-delivery operations. This is indeed a work in progress and

a lot more work has to be done in terms of making this method efficient.

Future work can include the addition of delivery-time constraints, payload limitations for

drones, accurate battery usage models, etc. which can make this more practical and applicable

to real-world scenarios.

AEROSP – 588
Final Project Prit Chovatiya

17

Lessons Learned

There was a myriad of lessons learned during this project which include the following but are

not limited to:

1. it is very useful to understand the math behind the algorithms and why something

‘works’ as it helps in reasoning out and explaining the results from an optimization.

2. creating a structured plan for the algorithm by creating a pseudo-code before jumping

into the implementation phase helps in keeping code clear and concise

Some factors where a lot of improvement could be made is to handle problems/issues/bugs in

the code in a structured way rather than brute-forcing and trying to fix things instantly. A lot

of time was spent doing this and a lot of time would be saved if improved upon.

References

 [1]: https://www.emarketer.com/content/global-ecommerce-2019

 [2]: Some images and pseudo algorithm code was also used from Multidisciplinary Design

Optimization – Joaquim Martins, Andrew Ning

https://www.emarketer.com/content/global-ecommerce-2019

