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Drone Delivery Schedule Optimization 

An Investigation 

 

 
 

 

Introduction 
 

Background and Motivation  

The e-commerce industry is are predicted to grow a staggering $4 trillion by 2023 [1]. 

Consequently, online retailers, in order to compete in this arena, attempt to deliver the best 

possible products in the least amount of time. Last-mile delivery optimization plays a crucial 

role in achieving this feat and companies like Amazon.com, Inc. are actively seeking to use 

fleets of drones to deliver products at the customer’s doorstep. Scheduling the delivery in most 

efficient manner with the least amount of wait time for the customer is key element to this. 

Even though the “travelling salesman-like” problem has been already tackled by companies in 

the past, the usage of drones and certain limitations with them presents a new challenge with a 

different set of constraints. Particularly, a drone’s batteries have to be charged, forcing them to 

return to the warehouse repeatedly in a given day while also meeting delivery-time constraints.  

 

As freight companies expand to new cities, the task of finding an optimal delivery schedule 

with drones is particularly challenging. Specifically, the scale of the problem grows 

exponentially with the increase in the number of locations (shown in Figure 1). For instance, 

making a delivery schedule for 1 warehouse, 8 delivery locations and a possibility of charging 

after each delivery has  8! X 27 = 5,160,960 potential delivery routes!  
 

 
 

Figure 1: Possible Routes with Locations 
 

Just adding two new locations for the same problem, the delivery routes grow to a whopping 

1,875,645,600 possibilities! Given the sheer scale of this problem, it is rather unrealistic to test 

every permutation of the routes calling for a faster method. This problem is certainly an 

appropriate candidate for an optimization-based investigation that can evaluate and select 

better designs automatically. Hence, a detailed study on the same is presented hereby.  

 



AEROSP – 588                                                              
Final Project                                                 Prit Chovatiya                                                                  

 

2 

Problem Formulation 
 

Optimization Problem Statement 

Consequently, the problem for an optimization strategy is formulated in a manner that is easy 

to implement, robust and scalable. The problem can be summarized via this question: For a 

given set of packages to be delivered to different locations, what is the most optimal departure 

schedule consisting of order of deliveries and charging times for the drone? The problem stated 

above is formulated so that the objective function, essentially a cost function which is being 

minimized. The cost function is a linear combination of two terms- 1) the total distance 

travelled by the drone and 2) number of charging stops used in a trip. This function can also be 

modified to conduct a multi-objective optimization for a pareto front. The formulated problem 

is given below: 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 →  𝑓(𝑥) 
 

                                 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜:                     𝑥𝑖 , 𝑦𝑗        𝑖 = 1, 2, … 𝑛 

                                                                     𝑗 = 1, 2, … 𝑛 − 1 
 

                                           𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                      𝑠𝑏𝑖 𝑡𝑜 𝑖+1  ≥ 𝑏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  

                                      𝑥𝑖+1  ≠ 𝑥𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 
 

                              𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑏𝑜𝑢𝑛𝑑𝑠:                      1 ≤  𝑥𝑖 ≤  𝑛  

                         0 ≤  𝑦𝑗 ≤  1 

 

𝐻𝑒𝑟𝑒, 𝑡ℎ𝑒 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑥) 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦 ∶ −  
 

𝑓(𝑥) = 𝛼 ∙ ∑ [√(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 −  𝑦𝑖−1)2 ] 

𝑛

𝑖=1

+ 𝛽 ∙ [# 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑜𝑝𝑠] 

 

𝑤ℎ𝑒𝑟𝑒 : 
𝑥𝑖  → 𝑜𝑟𝑑𝑒𝑟 𝑜𝑓 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠 

𝑦𝑗  → 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠 𝑎𝑓𝑡𝑒𝑟 𝑒𝑎𝑐ℎ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 

𝑛 → 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 

𝑏 → 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑒𝑣𝑒𝑙; sb → 𝑠𝑡𝑜𝑟𝑒𝑑 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

𝛼, 𝛽 →  𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 
(𝑥𝑖 , 𝑦𝑖)  → 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 

(𝑥𝑖−1, 𝑦𝑖−1)  → 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 

 

As seen from the problem formulation above the design variables for this problem will be 

sequential in nature. For instance, in a case of 8 locations, the two-design variables will be in 

the following vector form:  
 

𝑥𝑖 =  [𝑥1,  𝑥2,  𝑥3,  𝑥4,  𝑥5,  𝑥6,  𝑥7,  𝑥8] 
 

𝑦𝑗 =  [𝑦1,  𝑦2,  𝑦3,  𝑦4,  𝑦5,  𝑦6,  𝑦7] 
 

Here, 𝑥1 represents the first location to be visited, followed by 𝑥2 and so on. Secondarily, 𝑦𝑗 

represents a decision “to go charge at warehouse” versus “continue without charging” by 

parameters ‘1’ and ‘0’ respectively. An example of how these design variables are interpreted 

is shown below.  
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For this particular investigation, 8 locations and a warehouse are simulated, which is plotted in 

Figure 1. The coordinates of these locations and the warehouse are shown in Table 1 and the 

locations themselves are visually represented in Figure 2.  
 

 

 

Table 1: Location Coordinates 

 

Figure 2: Sample map for an 8-location delivery problem  
 

Considering an example, in a case of 8 locations, for the two-design variables: 
 

𝑥𝑖 =  [7, 3, 6, 2, 4, 0, 5, 1] 
 

𝑦𝑗 =  [1, 0, 0, 1, 0, 0, 0] 
 

Here, it should be noted that according to 𝑦𝑗 design variable, two charging stops are 

recommended, the first one after visiting location 7 and the second one after visiting location 

2. Furthermore, all the charging stops occur at the warehouse and consequently the drone flies 

back mid-trip. All the trips start and end at the warehouse representing the real-world scenario. 

For indexing purposes, location numbers range from 0 to 7 instead. The simulated trip can be 

shown by the following: 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3: Sample input interpretation of an 8-location model 
 

Location Coordinates 

# 0 [-300, 100] 

# 1 [-600, 0] 

# 2 [-400, -150] 

# 3 [-150, -400] 

# 4 [ -200, -600] 

# 5 [ -100, -100] 

# 6 [ -500, 500] 

# 7 [ -500, -300] 

Warehouse [-300, -300] 

Going from warehouse: (-300, -300) to starting location # 7 at: (-500, -300) 

-------------- 

Warehouse stop between loc # 7 at: (-500, -300) to loc # 3 at: (-150, -400) 

-------------- 

Directly going from loc # 3 at: (-150, -400) to loc # 6 at: (-500, 500) 

-------------- 

Directly going from loc # 6 at: (-500, 500) to loc # 2 at: (-400, -150) 

-------------- 

Warehouse stop between loc # 2 at: (-400, -150) to loc # 4 at: (-200, -600) 

-------------- 

Directly going from loc # 4 at: (-200, -600) to loc # 0 at: (-300, 100) 

-------------- 

Directly going from loc # 0 at: (-300, 100) to loc # 5 at: (-100, -100) 

-------------- 

Directly going from loc # 5 at: (-100, -100) to loc # 1 at: (-600, 0) 

-------------- 

Going from last loc # 1 at: (-600, 0) back to warehouse. 

-------------- 

Charged 2 times during the full trip. 

Total distance travelled during full trip: 4624.206124985304 
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Another interesting consideration here, is that the design variable 𝑦𝑗 also directly affects the 

objective function as minimizing charging stops saves time and improves efficiency. The 

function essentially returns a weighted objective value including the distance and the charging.  

 

Problem Classification 

The above problem can be classified into a multi-objective optimization – which includes 

minimizing the distance travelled by the drone and minimizing the amount of charging for a 

given trip. The design variables are discrete here as location indices and charging decisions 

have to strictly be integers for simplicity. There are two key constraints imposed on the design: 

1. the battery stored in the drone always has to have the potential of returning back to the 

warehouse from any given point in the trip and 2. no location can be revisited after they have 

been visited once except the warehouse. A key assumption here is that the drone has the 

capability to carry payload for 4 deliveries, implying that it would be able to deliver 4 packages 

simultaneously during a trip without going back to the warehouse. With regards to the objective 

and the constraint function characteristics, the objective function is non-smooth. In terms of 

the linearity no certain statement can be made. The objective is certainly non-convex, 

multimodal and deterministic.   

 

Models and Coupling 

The model used in this problem to compute the objective function consists of multiple 

components. Two important objectives of minimizing the distance travelled and minimizing 

the amount of charging stops in a trip are indeed coupled. In a particular case, when the 

optimization algorithm is minimizing the distance travelled during a trip, the drone might have 

to make multiple charging stops at the warehouse, to make the trip possible. This implies that 

even though the distance is being minimized, there are still a certain number of charging trips 

required, which in turn increase the amount of distance travelled. Contrarily, when the 

optimization is minimizing the number of charging trips, the solution still has to feasible 

enough to visit all locations without failing to return to the warehouse with sufficient charge. 

In both the cases, the objectives are competing and need to be handled appropriately.  

 

Optimization Algorithm 

It was evident that due to the discrete nature of the inputs, unavailability of gradients and the 

discontinuity of the objective function, a gradient-free optimization was to be sought. Even 

though gradient free methods perform inefficiently on high-dimension problems, this method 

works well with less than 30 variables, which in our case is only 15. Historically, problems 

consisting of sequential optimization also have been dealt with evolutionary methods such as 

genetic algorithm due to their flexibility in representing discretized design variables and 

exploring a “wide” design space. Furthermore, since a solution for the aforementioned problem 

requires a global search, genetic algorithm is chosen for this problem. Even though alternative 

methods such as Nelder-Mead and DIRECT can be used, these methods would often have 

extraneous amounts of constraints to ensure the discrete nature of design variables, rendering 

it more complicated and tedious than the former. Hence, due to the simplicity and robustness 

of the genetic algorithm to function with discrete design variables, it was chosen as the primary 

method.  

 

This method uses heuristically determined optimality criterion and iteration procedure while 

exploiting directly evaluated objective functions. The genetic algorithm is ‘population based’ 

which uses randomly generated ‘individuals’ consisting of that population. This population is 

reproduced iteratively, while filtering out the ‘fittest’ individuals (designs) every time based 
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on the principle of biological evolution and “survival of the fittest”. It involves three important 

components, namely: 1. selection followed by 2. crossover (reproduction) and finally, 3. 

mutation (natural variation).  The implementation of this method is covered in the following 

section.  

 

Problem Setup 

A major classification of the genetic algorithms is dependent on the manner of encoding the 

design variables. They can be either ‘binary encoded’ or ‘real-encoded’. Binary encoding is 

used to represent number, whether an integer or a real number, in the form of bits: ‘0’s and 

‘1’s. Whereas, real encoding simply translates the numbers to real values themselves. Encoding 

is done to replicate the chromosome type of representation of various designs which are merged 

and modified in various ways to introduce either ‘crossover’ or ‘mutation’ in the design 

variables.  

 

In our case, a ‘binary encoded’ implementation is presented, as this is one of the most efficient 

ways to represent integers, a characteristic which certainly dominates our design space. In this 

method, each design variable is represented with ‘m’ number of bits. Each bit, as stated above, 

has a value of either ‘0’ or ‘1’. Various permutations of these bits tend to represent various 

numbers. For a given design variable 𝑥 ∈ [𝑥𝑙𝑜𝑤𝑒𝑟 , 𝑥𝑢𝑝𝑝𝑒𝑟], this design space can be divided 

into 2𝑚 − 1 intervals. From which, the precision of this representation can be found via the 

given formula: 
 

∆ 𝑥 =
𝑥𝑢𝑝𝑝𝑒𝑟 − 𝑥𝑙𝑜𝑤𝑒𝑟

2𝑚 − 1
 

 

 

For our problem, two design variables: the delivery sequence and the charging decisions have 

to use different types of representation since both the variable have different bounds. In the 

case of the delivery sequence, 𝑥𝑖 ∈ [0, 7], representing the indices of each of the 8 locations. 

Since we wish to only have a precision of ∆ 𝑥 = 1 between these variables, the number of bits 

used to represent this is given by: 
 

∆ 𝑥 =
7 − 0

2𝑚 − 1
       →       2𝑚 =

7 − 0

1
+ 1 

  
Resulting in a 3-bit representation of the 8 locations. Table 2 shows each of the design variables 

for locations represented by a 3-bit representation.  
 

Location 3-bit representation 

0 000 

1 001 

2 010 

3 011 

4 100 

5 101 

6 110 

7 111 
 

Table 2: 3-bit representation of xi 
 

Contrarily, in the case of the charging decision variable 𝑦𝑗 ∈ [0, 1], each of these values could 

be simply represented by ‘0’s or ‘1’s themselves. Finally, these two design variables can be 
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represented into a ‘design string’ of 31 binary digits. For instance, a design [𝑥𝑖 , 𝑦𝑗] given 

below:  

[𝑥𝑖 ; 𝑦𝑗] = [0, 1, 2, 3, 4, 5, 6, 7 ;  0, 0, 1, 0, 1, 0, 1] 

can be represented as:  
 

000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | 0 | 0 | 1 | 0 | 1 | 0 | 1 

Upon encoding the design variables in a binary string representation, all the tasks of the genetic 

algorithm namely: selection, crossover and mutation can be conducted by string manipulation 

but there is still a need of decoding these designs for the objective function evaluations. For 

decoding these representations, the formula given below is used to convert bits into integers: 

 

 𝑥 = 𝑥𝑙𝑜𝑤𝑒𝑟 + ∑ 𝑏𝑖 . 2𝑖 . ∆ 𝑥

𝑚−1

𝑖=0

 

 

Generating Initial Population 

The first step in the implementation of the genetic algorithm is to generate a randomized design 

space with ‘N’ number of individuals, all grouped in a generation. As a general heuristic rule, 

the number of individuals ‘N’ in the initial population is usually more than an order of 

magnitude larger than the number of design variables. To randomize the design generation for 

a binary representation, a random number in 𝑟 ∈ [0, 1] is selected. It is then probabilistically 

determined that if 𝑟 ≤ 0.5, then the bit will be chosen as a ‘0’ and if 𝑟 ≥ 0.5, then the bit will 

be assigned a value of ‘1’. This is done repeatedly, until a binary string of 31 bits is obtained 

representing one design in a population of N individuals. Overall, for an initial population of 

1000 individuals, 31,000 bits have to randomly generated. Here, the population size N can vary 

and is heuristically determined which ensures maximum diversity in the design space.  

 

Evaluating Fitness 

Upon generating the initial design population, all the individuals are to be evaluated by the 

objective function to start selection process. To do this, the encoded initial population is 

decoded and fed into the objective function. Contrary to the other optimization methods, the 

genetic algorithm maximizes the objective. For our case, since the objective is being 

minimized, the objective function is converted to 𝐹 =  
1

𝑓(𝑥)
  resulting in the objective function 

given by: 
 

𝐹(𝑥) =
1

𝛼 ∙ ∑ [√(𝑥𝑖 −  𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 ] 
𝑛

𝑖=1
+ 𝛽 ∙ [# 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑜𝑝𝑠]

 

 

Furthermore, to ensure that our designs are feasible, the objective function has to be 

transformed to a merit function which reflects the violation of constraints as well. In our 

problem, the two constraints: 

 

 𝑐1(𝑥) →  𝑠𝑏𝑖 𝑡𝑜 𝑖+1  ≥ 𝑏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
 

 𝑐2(𝑥) →  𝑥𝑖+1  ≠ 𝑥𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 
 

These ensure that the drone has enough battery at all times to get to next location (𝑐1) and that 

the drone does not revisit any previously visited locations (𝑐2) respectively.  
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In the case of 𝑐1, the drone starts the trip with stored battery 𝑠𝑏 = 1500 𝑚𝑒𝑡𝑒𝑟𝑠. Here, the 

battery is linearly related to the distance, implying that a single charge can give the drone the 

ability to travel 1500 meters at once. The stored battery 𝑠𝑏 is repeatedly calculated at every 

step in the trip, yielding the following constraint violation values 𝑐1,𝑣𝑖𝑜 if the drone has/doesn’t  

have the sufficient battery at all the steps in a trip, given by the equations below: 
 

𝑐1,𝑣𝑖𝑜(𝑥) = 0               𝑖𝑓 𝑠𝑏 𝑖 𝑡𝑜 𝑖+1   ≥ 𝑏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
 

𝑐1,𝑣𝑖𝑜(𝑥) = |𝑠𝑏 𝑖 𝑡𝑜 𝑖+1 − 𝑏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑|               𝑖𝑓 𝑠𝑏 𝑖 𝑡𝑜 𝑖+1 ≤  𝑏𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  

 

In the case of constraint 𝑐2, a simple repetition check is used to compute the 𝑐2,𝑣𝑖𝑜 values given 

by the following equations: 

 

𝑐2,𝑣𝑖𝑜(𝑥) = 0               𝑖𝑓 𝑥𝑖+1 ≠ 𝑥𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖  (𝑛𝑜 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠) 
 

𝑐2,𝑣𝑖𝑜(𝑥) = 𝑐𝑜𝑢𝑛𝑡[𝑥𝑖+1 = 𝑥𝑖]               𝑖𝑓 𝑥𝑖+1 = 𝑥𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖  (𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠) 

 

On the other hand, the two constraint violation values are combined into a penalty function 

given by the following equation: 

 

𝐶 𝑣𝑖𝑜(𝑥,  𝜇1,  𝜇2) =  𝜇1. 𝑐1,𝑣𝑖𝑜(𝑥) + 𝜇2. 𝑐2,𝑣𝑖𝑜(𝑥) 

 

Here, 𝜇1 and 𝜇2 are relative scaling constraints to ensure homogenous constraint violation 

penalties apply appropriately. Finally, a merit function 𝐹(𝑥,  𝜇1,  𝜇2) is used to include the 

constraint violation as a linear combination of the objective function and the penalty function 

given by : 

 

𝐹(𝑥,  𝜇1,  𝜇2) = 
 

1

𝛼 ∙ ∑ [√(𝑥𝑖 −  𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 ] 
𝑛

𝑖=1
+ 𝛽 ∙ [# 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑜𝑝𝑠] + 𝐶 𝑣𝑖𝑜(𝑥,  𝜇1,  𝜇2)

 

 

This function is maximized and used to evaluate the ‘fitness’ for every individual in a given 

population. This method allows the optimization algorithm to conduct an unconstrained search 

on an implicitly constrained objective function making it simple to implement while ensuring 

feasibility of designs.   

 

Selection 

After evaluating fitness of all the design variables in the population, a selection procedure 

inspired from the concept of “survival of the fittest” is used to generate ‘parent’ populations. 

These parent populations are then used to generate ‘off-springs’ which populate the subsequent 

generation. This process improves the average fitness of a generation resulting in filtering of 

better designs. There are various methods for conducting selection such as tournament or 

roulette wheel selection. Hereby, the tournament selection method is used. In this method, two 

randomly selected individuals are evaluated and compared with each other, and the better 

design is chosen to be in the final parent pool. It results in a pool of N/2 parents from an initial 

generation consisting of N individuals. This is done twice to create two parent pools which are 

then used for crossover or ‘mating’ of parents from both the pools. This process is better shown 

in Figure 4 below.  
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Figure 4: Tournament Selection 
 

As it can be seen here, a tournament selection is conducted twice, with the two selection 

procedures resulting in the parent pools given in red and blue respectively.  

 

Crossover 

This process uses the two parent pools resulting from the tournament selection process and 

uses them to generate an ‘offspring’ population. In general, two individuals arise from a single 

parent pair resulting in a population of N individuals. This method can be completed using an 

operation called ‘n-point crossover’. Here, the binary representation of one randomly selected 

parent from each parent pool is considered. For our problem, a 2-point crossover is done for 

the sequence design variable 𝑥𝑖. This process can be visualized using Figure 5 where parents 

from parent pool A and B are represented in red and blue respectively. 
 

 
Figure 5: 2-point Crossover 

 

Two offspring are generated by selecting the first and the third set of bits from parent red and 

selecting the second set of bits from parent blue and vice versa for the other offspring. In this 

way, characteristics from both parents are transferred to resulting offspring. The following 

example applies this strategy and results are shown below. It is to be noted that only 4 variables 

of 3-bit design representations out of 8 variables in 𝑥𝑖 are shown below: 
 

Parent A = | 000 | 001 | 010 | 011 | Offspring A = | 010 | 001 | 010 | 001 | 

Parent B = | 111 | 101 | 110 | 100 | Offspring B = | 101 | 101 | 110 | 101 | 
 

With regards to the charging decision design variable 𝑦𝑗, an alternate crossover strategy was 

used. This process alternately selected bits from both the parents similar to the 2-point 

crossover, for the binary representation of 𝑦𝑗 shown below:  
 

Parent A = | 0 | 0 | 1 | 0 | 1 | 0 | 1 |  Offspring A = | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 

Parent B = | 1 | 0 | 1 | 1 | 0 | 0 | 1 | Offspring B = | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 
 

In this manner the offspring for the next generation were found.  
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Mutation 

For the final operation of the genetic algorithm, mutation is an operation inspired by the 

occasional genetic mutation that occurs in a given population. It is essential for this method as 

it introduces an element of diversity in the population. Even though crossover and selection 

combine the characteristics of better designs into the offspring, mutation helps cover the gaps 

in some information which is lost in those operations. To make this possible, a ‘bit-flip’ 

strategy was used to introduce these mutations in a certain number of designs in a population. 

The example below shows this operation on a design: 
 

Before mutation: 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | 0 | 0 | 1 | 0 | 1 | 0 | 1 

After mutation: 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000 | 1 | 1 | 0 | 1 | 0 | 1 | 0 
 

One of the most neglected but a rather crucial component of the mutation procedure is the 

mutation rate which impacts the number of individuals being mutated in every generation. 

There are many ways in which this hyperparameter is set which has different implications on 

the search. Extremely high mutation rates introduce abnormally high diversity into the 

population making this more of a randomized search. On the other hand, extremely low 

mutation rates can be responsible for leading the search into a local minimum. Furthermore, a 

constant mutation rate throughout all the generations can also produce inconsistent results. 

With regards to our implementation, a heuristically determined dynamic-mutation rate was 

adopted. This rate was decreased by some fixed percentage every 10 generations to ensure a 

robust search through the design space. 

 

Overall Implementation 

Upon defining the main operations for the genetic algorithm, a collective method of the 

algorithm is shown by the pseudo-code below. Firstly, the bounds for the design variables are 

inputted, which are used to generate the initial population. Each individual in the population is 

evaluated via the objective function and selection is conducted upon them resulting in two 

parent pools. These pools are inputted into the crossover function which outputs N offspring 

resulting in a new generation. Based on a specific mutation rate, some individuals in a 

population are then mutated. This process is repeated for a given number of generations 

counted by ‘k’ and the best designs are produced as the output.   
 

 
Figure 6: Pseudo code for Genetic Algorithm 
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Optimization Results  
 

Optimization of a Simplified Problem 

To verify the correct implementation of the genetic algorithm, it is crucial to conduct ‘sanity-

checks’ before the complete execution of the algorithm on a complex model. To enable this, 

the genetic algorithm is implemented on a simplified objective function given below: 
   

𝑓(𝑥) = 𝛼 ∙ ∑ [√(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 −  𝑦𝑖−1)2 ] 

𝑛

𝑖=1

+ 𝛽 ∙ [# 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑜𝑝𝑠] 

 

It is to be noted that here, the penalty component for constraint violation has been omitted 

making this simply a minimization of the total distance travelled and the number of charging 

stops. For this simplified version, neglecting the constraints for battery storage and repetition 

of delivery locations, the algorithm should naturally converge to a design variable with the 

same repeated locations in 𝑥𝑖 since this results in a minimal total distance. Furthermore, the 

number of charging stops are minimized by merely not having any charging stops at all. The 

result should be of the form, where 𝑥 is the location which closest to the warehouse. 
 

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [𝑥, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥, 𝑥 ;  0, 0, 0, 0, 0, 0, 0] 
 

Since, now we have an understanding of the nature of the expected result from the minimizer, 

we shall run the genetic algorithm and verify the same. Upon implementing this, the algorithm 

yielded an optimum design variable given below: 
 

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [2, 2, 2, 2, 2, 2, 2, 2 ;  0, 0, 0, 0, 0, 0, 0] 
 

This is indeed the same as the expected result. Here, the optimization yields, 𝑥 = 2, since 

location # 2 is the closest to the warehouse resulting in the minimum total distance. 

Furthermore, the convergence plots for the algorithm are given below. Here, in Figure 7, the 

average fitness of every generation is plotted with the number of generations. It can be clearly 

seen that the algorithm, converges with a design with maximum fitness for the last few 

generations.  
 

 
 

Figure 7: Average fitness with generations 
 

Additionally, the distance of the best design from every generation has been plotted below in 

Figure 8. As it can be verified the algorithm converges on the minimum distance.  
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Figure 8: Average fitness with generations 
 

Now, since the algorithm functions as expected for a simplified model, it can be used to 

optimize the complex model.  

 

Algorithm Justification 

As seen from the results of the optimization of the simplified problem, the genetic algorithm 

proves to find a solution quickly. A population size of 5000 individuals and 30 generations was 

used. This implies that the algorithm took only 150,000 function evaluations to find the minima 

for a problem which consists of more than 5,160,960 possible designs in the design space.  

 

It can be inferred from the convergence plots, that a significant improvement in the average 

fitness value is noted with generations. Furthermore, the distance of the best designs with 

generations converges to a minimum which is expected. Furthermore, the algorithm seems to 

handle the discretized design variables with ease and without any complications. Hence, the 

implementation of the genetic algorithm proves to be robust and shows promise in dealing with 

our complex problem.  

 

Hyperparameters 

There are many hyperparameters for the genetic algorithm which need to be experimentally 

determined and tweaked to get the best performance for the specified problem. Specifically, 

the population size, number of generations and mutation rate are some of the crucial parameters 

which are to be decided. Starting from the population size, as pointed out earlier, it is usually 

chosen to be set an order of magnitude higher than the number of design variables. In our case, 

it was determined via trial and error that a population size of 8000 individuals yielded the best 

diversity in the initial population pool. A population size greater than that resulted in many 

repeated designs. Hence, 8000 was chosen as the population size.  

 

With regards to the number of generations, it was seen, yet again through trial and error that 

populations usually converged to an optimum after 50-60 generations. Hence, considering a 

margin of safety, all the optimizations were run for 70 generations.  

 

Finally, the study on the effect of the mutation rate on convergence was conducted. Four 

different initial mutation rates were used to experiment. All of the algorithm runs used a 

dynamically changing mutation rate. Every 10 generations, the mutation rate was reduced by 

80%. For the initial mutation rates of 50%, 25%, 10% and 1%, the convergence plots are shown 

in Figure 9.  
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Figure 9: Effect of Mutation Rate on Convergence  
 

It can be seen that lower initial mutation rates yielded the best improvement in average fitness 

values. Hence, an initial mutation rate of 15% was used in our implementation.  

 

Main Problem Optimization 

The optimization of the main problem was done in three scenarios. The first two scenarios 

tested the objective functions for minimizing distance travelled during a trip and for 

minimizing number of charging stops separately. The third and the final scenario tested the 

objective function for a combination of both the objectives. This was done to obtain a clearer 

understanding of the solutions. Furthermore, for each of these scenarios four test runs were 

used for finding the optimum to increase the possibility of capturing the optimal design since 

the initial population is randomized. Each test used 8000 individuals, 70 generations and varied 

initial mutation rates [15%, 10%, 5%, and 1%] to further improve the odds of finding the 

optimum.  

 

Objective – Minimize Distance Travelled 

The objective of minimizing distance travelled is first investigated. The modified objective 

function for this scenario if given by the following equation: 

 

𝐹(𝑥,  𝜇1,  𝜇2) = 
 

1

𝛼 ∙ ∑ [√(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 ] 
𝑛

𝑖=1
+ 𝐶 𝑣𝑖𝑜(𝑥,  𝜇1,  𝜇2)

 

 
 

The minimum found for same is given by: 
 

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [4, 2, 7, 3, 5, 0, 6, 1 ;  1, 0, 1, 0, 0, 0, 0] 
 

 

with an optimal distance of 𝑓(𝑥𝑖
∗) =  3341.64 m. The convergence plots are plotted for this 

case below in Figure 10 and 11. 
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Figure 9: Convergence plot for Scenario 1 
 

Here, it can be seen that the convergence rates for various mutation rates are identical for 

Scenario-1. Even though the same improvement on the average population fitness is noticed 

there is a major difference between the optimum designs each of the test runs reveal.  
 

 
 

Figure 10: Minimum distance for best designs for Scenario 1 
 

As shown in Figure 10, the minimum distance yielded by mutation rate of 15% is the best 

solution. Another interesting phenomenon noted here is that every this this test is run, the 

optimal changes as a result of the randomized initial population. This results in the algorithm, 

occasionally getting lucky/unlucky with some really good/poor designs.  

 

Objective – Minimize Charging Stops 

Here, the objective of minimizing the number of charging stop was investigated. The modified 

objective function for this scenario if given by the following equation: 

 

𝐹(𝑥,  𝜇1,  𝜇2) = 
 

1

𝛽 ∙ [# 𝑜𝑓 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑠𝑡𝑜𝑝𝑠] + 𝐶 𝑣𝑖𝑜(𝑥,  𝜇1,  𝜇2)
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The optimization found the following optimum design: 

 

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [7, 2, 5, 0, 6, 1, 3, 4 ;  0, 1, 0, 0, 0, 1, 0] 
 

which only uses two charging stops which the minimum required stops to make any trip in this 

design space feasible. The convergence plot for the same is shown in Figure 11. It can be seen 

that the initial mutation rate of 15%, yields slightly better performance for the average fitness 

for the final generation.  
 

 
 

Figure 11: Convergence plot for Scenario 2 
 

Furthermore, a rather interesting observation can be made when the total distance for the best 

design solutions is plotted for all the scenarios which is shown in Figure 12. 

 

 
 

Figure 12: Minimum distance for best designs for Scenario 2 
 

It can be noted that the best design for the initial mutation rate of 15% yields a distance travelled 

of 𝑓(𝑥𝑖
∗) =  3210.28 m. This is interesting because when the objective was to simply minimize 

the distance travelled in Scenario-1, the solution found had a greater distance than this. 

Consequently, this implies and verifies our belief about the coupling of the both the objectives 

and hence, if we were to find a minimum then that objective function shall include both the 

terms. 
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Objective – Minimize both objectives 

Finally, for Scenario-3, the case of minimizing both the distance travelled and the charging 

stops, the objective function remains the same as the one in the problem formulation. The 

optimization found the following optimum design: 
 

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [7, 3, 4, 2, 5, 0, 6, 1 ;  1, 0, 1, 0, 0, 0, 0] 
 

resulting in a minimum distance of 𝑓(𝑥𝑖
∗) =  3251.29 m with only 2 charging stops. The 

convergence plot for the same is shown in Figure 13. It can be seen that the initial mutation 

rate of 1%, yields slightly better performance for the average fitness for the final generation.  
 
 

 
 

Figure 13: Convergence plot for Scenario 3 
 

Even though an initial mutation rate of 1% yielded a better average fitness for the final 

generation, the run with an initial mutation rate of 10% also gave comparable minimum 

distances.  
 

 
 

Figure 14: Minimum distance for best designs for Scenario 3 
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Upon conducting further runs, with an initial mutation rate of 15% , a slightly better optimum 

design was found. This design is given below : 

 

[𝑥𝑖
∗ ; 𝑦𝑗

∗] = [7, 3, 4, 2, 1, 6, 0, 5 ;  1, 0, 1, 0, 0, 0, 0] 
 

resulting in a minimum distance of 𝑓(𝑥𝑖
∗) =  3055.73 m with only 2 charging stops. This 

design is only slightly different from the optimal design found in Scenario-3. 
 

 
 

Figure 15: Optimal Route for delivery with charging stops 

 

The entire route which minimizes both the distance travelled during a trip and the charging 

stops is plotted below in Figure 15. It can be verified visually that an optimal route was found 

by the algorithm.  

 

Conclusion and Recommendations 

It can be seen from all the scenarios that the genetic algorithm is successful in finding the 

optimum values. This method proves to be fast, efficient and robust for problems with large 

design space and discrete variables. Even though this method is successful in finding the 

minima, it is still incapable of yielding consistent results every run. This is due to its 

randomized initialization of populations. Sometimes, the algorithm gets ‘lucky’ and converges 

on a good design and sometimes it does not. Furthermore, a lot of experimentation has to be 

done in order to find the best hyperparameters for the genetic algorithm. Different problems 

have different optimum hyperparameters and the selection needs to be done carefully. Genetic 

algorithm proves to be valuable in getting important insights in sequential/route optimization.  

 

This methodology of finding the optimum route for a drone delivery system proves to be 

extremely applicable to the last-mile-delivery operations. This is indeed a work in progress and 

a lot more work has to be done in terms of making this method efficient. 

 

Future work can include the addition of delivery-time constraints, payload limitations for 

drones, accurate battery usage models, etc. which can make this more practical and applicable 

to real-world scenarios.  
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Lessons Learned 

There was a myriad of lessons learned during this project which include the following but are 

not limited to:  

1. it is very useful to understand the math behind the algorithms and why something 

‘works’ as it helps in reasoning out and explaining the results from an optimization.  

2. creating a structured plan for the algorithm by creating a pseudo-code before jumping 

into the implementation phase helps in keeping code clear and concise  

Some factors where a lot of improvement could be made is to handle problems/issues/bugs in 

the code in a structured way rather than brute-forcing and trying to fix things instantly. A lot 

of time was spent doing this and a lot of time would be saved if improved upon.  
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